A Note on the Accuracy of Spectral Method Applied to Nonlinear Conservation Laws
نویسندگان
چکیده
Fourier spectral method can achieve exponential accuracy both on the approximation level and for solving partial differential equations if the solutions are analytic. For a linear partial differential equation with a discontinuous solution, Fourier spectral method produces poor pointwise accuracy without post-processing, but still maintains exponential accuracy for all moments against analytic functions. In this note we assess the accuracy of Fourier spectral method applied to nonlinear conservation laws through a numerical case study. We find that the moments with respect to analytic functions are no longer very accurate. However the numerical solution does contain accurate information which can be extracted by a post-processing based on Gegenbauer polynomials. 1Research supported by ARO grant DAAL03-91-G-0123 and DAAH04-94-G-0205, NSF grant DMS-9211820, NASA grant NAGl-lI45 and contract NAS1-19480 while the first author was in residence at the Institute for Computer Applications in Science and Engineering (ICASE), NASA Langley Research (;enter, Hampton, VA 23681-0001, and AFOSR grant 93-0090.
منابع مشابه
A Note on the Accuracy of Spectral Method Applied to Nonlinear Conservation Laws 1
Fourier spectral method can achieve exponential accuracy both on the approximation level and for sQIving partial differential equations if the solutions are analytic. For a linear PDE with discontinuous solutions, Fourier spectral method will produce poor point-wise accuracy without post-processing, but still maintains exponential accuracy for all moments against analytic functions. In this not...
متن کاملOn Black-Scholes equation; method of Heir-equations, nonlinear self-adjointness and conservation laws
In this paper, Heir-equations method is applied to investigate nonclassical symmetries and new solutions of the Black-Scholes equation. Nonlinear self-adjointness is proved and infinite number of conservation laws are computed by a new conservation laws theorem.
متن کاملA total variation diminishing high resolution scheme for nonlinear conservation laws
In this paper we propose a novel high resolution scheme for scalar nonlinear hyperbolic conservation laws. The aim of high resolution schemes is to provide at least second order accuracy in smooth regions and produce sharp solutions near the discontinuities. We prove that the proposed scheme that is derived by utilizing an appropriate flux limiter is nonlinear stable in the sense of total varia...
متن کاملNumerical resolution of large deflections in cantilever beams by Bernstein spectral method and a convolution quadrature.
The mathematical modeling of the large deflections for the cantilever beams leads to a nonlinear differential equation with the mixed boundary conditions. Different numerical methods have been implemented by various authors for such problems. In this paper, two novel numerical techniques are investigated for the numerical simulation of the problem. The first is based on a spectral method utiliz...
متن کاملChebyshev–legendre Spectral Viscosity Method for Nonlinear Conservation Laws∗
In this paper, a Chebyshev–Legendre spectral viscosity (CLSV) method is developed for nonlinear conservation laws with initial and boundary conditions. The boundary conditions are dealt with by a penalty method. The viscosity is put only on the high modes, so accuracy may be recovered by postprocessing the CLSV approximation. It is proved that the bounded solution of the CLSV method converges t...
متن کامل